RFID

Radio frequency identification, or RFID, is a generic term for technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip that is attached to an antenna (the chip and the antenna together are called an RFID transponder or an RFID tag). The antenna enables the chip to transmit the identification information to a reader. The reader converts the radio waves reflected back from the RFID tag into digital information that can then be passed on to computers that can make use of it. 

There are two types of RFID tags: passive and battery powered.  A passive RFID tag will use the interrogator’s radio wave energy to relay its stored information back to the interrogator.  A batter powered RFID tag is embedded with a small battery that powers the relay of information.

Why Use RFID?

RFID technology has the capability to both greatly enhance and protect the lives of consumers, and also revolutionize the way companies do business. As the most flexible auto-identification technology, RFID can be used to track and monitor the physical world automatically and with accuracy. RFID can tell you what an object is, where it is, and even its condition, which is why it is integral to the development of the Internet of Things—a globally interconnected web of objects allowing the physical world itself to become an information system, automatically sensing what is happening, sharing related data, and responding.

What’s the difference between RFID and Barcode?

RFID is not necessarily "better" than bar codes. The two are different technologies and have different applications, which sometimes overlap. The big difference between the two is bar codes are line-of-sight technology. That is, a scanner has to "see" the bar code to read it, which means people usually have to orient the bar code towards a scanner for it to be read. Radio frequency identification, by contrast, doesn’t require line of sight. RFID tags can be read as long as they are within range of a reader. Bar codes have other shortcomings as well. If a label is ripped, soiled or falls off, there is no way to scan the item. And standard bar codes identify only the manufacturer and product, not the unique item. The bar code on one milk carton is the same as every other, making it impossible to identify which one might pass its expiration date first.